BIOLOGICAL WASTEWATER TREATMENT BY PHYTOREMEDIATION IN A CONSTRUCTED WETLAND SYSTEM

A Comparative Study using Vetiver (Chrysopogon Zizanioides) and Narkot (Phragmites karka)

> Nandani Pari Ghimire 5-2-408-19-2008 Batch 2012-2014

SuperVisor: Dr. Bhojraj Panta Co- Supervisor: Mr. Sunil Babu Khatry Co- Supervisor: Dr. Ramji Bogati

Outline

- Introduction
- Statement of Problem
- Objective
- Significance of Study
- Limitations
- Study Area
- Data Collection technique
- Major Findings
- Summary
- Conclusion
- Recommendation

Introduction

- Wastewater: Combination of Organic and Inorganic pollutants
- Wetlands: Storehouse of organic nutrients
- Constructed wetlands: Mimic of natural system
- Phytoremediation: Biologically nutrient absorption by plants and microorganisms
- Vetiver(Chrosopogon zizanioides) and Narkot; Common reed(Phragmites karka) widely used for wastewater treatment in many countries

Vetiver

Narkot

Statement of Problem

- Human sanitary wastes, Sewerage, Industrial effluents are main cause of water pollution
- Bagmati river quality: COD(110-197.62), TSS (92-3000), NO3(0.6-1.25) mg/l since 2003-2013 (ENPHO, 2003; Ghimire. N., 2013)
- Bagmati and its tributaries around Kathmandu being degraded
- Kathmandu Valley had five municipal wastewater treatment plants (WWTP) at Guheshwori, Kodku, Dhobighat, Sallaghari and Hanumanghat but the only operated was activated sludge system at Guheshwori (Aratha, 2003)
- Conventional methods for wastewater treatment are costly and technically advance
- Natural, easy and low cost method needed which is best done by phytoremediation in Constructed wetland system

Objective

Broad Objective

 To determine the waste water treatment efficiency of Vetiver (Chrysopogon zizanioides) and Narkot (Phragmites karka) in Constructed Wetland System

Specific objectives

- To Study the morphological changes in the Vetiver and Narkot during their growth on planting individually or mixed way
- To determine the Physiochemical Parameters of wastewater before and after treatment at an interval of two weeks to determine the change in chemical concentration
- To identify the variability of water parameters in relation to morphological change and different way of plantation of Vetiver and Narkot
- To compare the efficiency of Vetiver (Chrysopogon zizanioides) and Narkot (Phragmites karka) in waste water treatment

Significance of Study

- Phytoremediation- natural process, no additional technical assistance once planted properly with appropriate planning
- water quality of natural streams improved
- Impact on surrounding positive
- Beneficial for agriculture, social, environment and economic sectors
- Comparision bring better solution
- Would be helpful for further research
- Treatment and recycling of wastewater
- Meet water demand without deteriorating the natural systems

Limitation of Study

- conducted in very small scale (150 lt/ pond/ day) (Cull et al., 2000, 600ml/pot)
- The research duration only six month (March to August- favorable environmental condition)
- The Lab Tests were done after three months of plantation
- Exact variation in treatment efficiency with growth could not be studied in detail
- mixing of rainwater and the ground water flow during Monsoon

Study Area

Data Collection Technique

S.No	Objective	Method	Tools and methodologies
I	Studying morphological changes in the vetiver and Narkot during their growth	Site Observation	Measuring plants height and hedge at weekly interval
2	Determining Physiochemical parameters before and after treatment	APHA, AWWA and WEF (2005) MPN method	Determining BOD, COD, NO3 ,TP, CO2,CI and coliform at two weeks interval
3	Identify variability of water parameters in relation to morphological change	Comparing treated water parameters values at different level of growth	MS-Excel 2007, SPSS 20, CONOCO 4.5 and R 1.12.1 for T-Test, Scatter Diagram and ANOVA

Major Findings

- Maxm Growth rate V=67cm, Narkot=48cm
- On the sixth month the overall concentration of BOD5, COD, NO₃- N, TP, Free CO₂, Chloride content and EC in the effluent after treatment were reduced by

% RED	BOD 5	COD	NO3- N	ТР	CO2	CI-
Vetiver	92.30	80.76	90.90	78.12	87.5	81.13
Narkot	76.92	35.38	81.18	55	56.25	52.83
Mixed	84.61	53.84	84.09	60	62.5	60.37
Control	53.84	28.12	30	32.5	28.12	26.41

- Treatment efficiency vetiver>Mixed>Narkot>Control
- Soil Nutrients Org. matter, TN%, TP(ppm), Organic compound high from vetiver pond than Narkot, Nutrients after six month increased in all treatment ponds

Findings Contd...

Water Quality BOD COD reduction

Soil Nutrients

Results From Paired T-Test for COD reduction

Compared Between	т	DF	P-Value	95% confidence interval	Sample mean difference
Vetiver Vs Phragmites	22.706	5	3.08e-06	35.35626 44.38374	39.87
Vetiver Vs Mixed	9.5919	5	0.0002087	21.04633 36.45700	28.75167
Phragmites Vs Mixed	-3.663	5	0.01455	-18.920748 -3.315918	-11.11833

One way ANOVA test of variance of COD reduction effeciency of Vetiver and Narkot with Growth Rate

Vetiver(Chrosopogon		Sum Sq	Mean Sq	F value	Pr(>F)
zizanioides)					
(COD Red%)		16.1	16.06	0.112	0.754
Residual	4	571.9	142.99		
Narkot (Phragmites karka)	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Narkot (Phragmites karka) (COD Red%)	Df I	Sum Sq 636.4	Mean Sq 636.4	F value	Pr(>F) 0.273

Change in %Organic matter, % Organic carbon, Average P and Total Nitrogen concentration in soil

	Before Plantation			After 3 months			After 6 months					
53 2 10	V	N	М	Control	V	N	М	Control	V	N	М	Control
% Org. Carbon	4.64	5.23	4.86	4.64	5.82	6.04	5.67	6.67	7.55	6.26	6.81	6.30
%OM	8.00	9.02	8.38	8.00	10.03	10.41	9.78	11.49	13.02	10.80	11.75	10.86
Avg.P(ppm)	95.0	108.1	99.9	95.0	121.3	126.2	118.0	140.2	160.0	131.2	143.5	132.0
TN%	0.34	0.38	0.35	0.34	0.42	0.43	0.41	0.47	0.53	0.45	0.48	0.45

Summary

- Growth rate greater in the Vetiver than Narkot
- Narkot showed dying and new growth continuously Wastewater treatment, As new plants played role in absorbing nutrients, its efficiency was unaffected by growth rate
- Mixed Pond performed better than Narkot in wastewater treatment
- Vetiver survived 100%, Wastewater treatment efficiency remained excellent everytime along its growth, Growth rate didn't vary its efficiency
- Reduced range of the pollutants concentration within the standard Guideline value by Vetiver treatment

Conclusion

- with no arguments can be developed as an easy, natural and cost effective option for the treatment of wastewater
- Wastewater treated by Vetiver can be reused for irrigation, aquaculture, recreation and industrial purposes and has no harm to the aquatic lives and river ecosystem.
- Decentralized wastewater treatment necessary
- Phytoremediation in Constructed wetland- best and easy option for wastewater treatment at less invest of money, time and technology

Recommendation

- More practical, reliable and cheaper method of treating effluent before being passed into the river should be sought
- Decentralized wastewater treatment for promoting reuse and recycle of wastewater
- Appropriate techniques for rainwater harvesting should be developed, particularly for major urban areas
- Awareness activities about conserving water quality and quantity should be conducted in all parts of the country
- Strict laws and efflent standards should be enforced for the major contributors of wastewater like Industries, Hospitals, Hotels, Housings, Departement malls etc.
- Guideline should be updated and maintained

Acknowledgement to All

ThankYou